SITCOMTN-124

Metrics and Plots Available in ComCam On-Sky Data#

Abstract

This technote explores the metrics/plots generated by the LSST Science Pipelines for Data Preview 1. We describe the methods used to aggregate these plots and metrics, list metrics and plots created by each task, and provide examples of each metricBundle / Plot produced.

Intro#

This document was originally created as part of the Operations Rehearsal 3 and updated during the preparation of Data Preview 1. It is not intended to be a definitive source/documentation for plots and metrics. Instead, the hope is that this document can help others learn how to determine what plots/metrics exist and how to access them.

To facilitate this we describe the methods we used to find, access and understand the data products created when running the data reduction pipeline (DRP). This incudes:

Then we list out the tasks in the Nightly Validation Pipeline that generate metrics and plots. For each task we link the pipeline yaml that configures the task (tagged to w_2025_04) and examples of the metricMeasurementBundles and Plots created by each task. This should allow for a quick exploration of the data products produced as a part of this pipeline.

For each metricBundle we list an example dataId used, the metricBundle’s name, its atools docstring, any additional notes, and an example result. We split these into Visit-level metrics and Tract-level metrics.

Finally, for each plot datasetType we show an example version of the plot, again split into Visit-level plots and Tract-level metrics.

The code used to generate the plots and figures for this technote can be found in the notebook atools_metrics_plots_census.ipynb

Finding and accessing data products#

In this section we describe the ways we determined which metrics and plots were created by the Data Release Processing (DRP) runs.

For more information on how metrics and plots are created or how to run your own pipeline see the tutorial in the analysis_tools documentation.

Which collections to use#

The data reduction campaigns are listed in the “LSSTComCam Intermittent Cumulative DRP Runs” confluence page. On that page we can see the following information for the collection containing the w_2025_04 intermittent cumulative DRP reductions:

repo = /repo/main
collection = LSSTComCam/runs/DRP/DP1/w_2025_04/DM-48556

What tools/metrics/plots exist#

To see what metrics exist in a given butler collection (note that this assumes the butler has been initialized with the desired repo, the registry extracted via registry = butler.registry, and the collection name assigned to the variable collection), execute the following. This code block finds all datasetTypes with storageClass of MetricMeasurementBundle.

metrics_datasets = []

for datasetType in registry.queryDatasetTypes():
    if registry.queryDatasets(datasetType, collections=collection).any(execute=False, exact=False):
        if datasetType.storageClass_name == 'MetricMeasurementBundle':
            print(datasetType)
            metrics_datasets.append(datasetType)

A similar query with MetricMeasurementBundle replaced by Plot will show you all of the plot datasetTypes that have been defined for the given repo/collection. Some examples are shown below:

DatasetType('matchedVisitCore_metrics', {instrument, skymap, tract}, MetricMeasurementBundle)
DatasetType('matchedVisitCore_g_stellarAstrometricResidualStdDevDec_FocalPlanePlot', {instrument, skymap, tract}, Plot)
DatasetType('preSourceTableCore_skySourceFlux_HistPlot', {band, instrument, physical_filter, visit}, Plot)
DatasetType('objectTableExtended_r_ap12PsfSky_SkyPlot', {skymap, tract}, Plot)

This query compiles a list of datasetType objects, which include the butler dimensions necessary to retrieve the dataset (the items included within the curly braces above; for example, to retrieve matchedVisitCore_metrics from the butler, one would need to specify the desired instrument, skymap, and tract in the dataId passed to the butler). An example of how to retrieve one of these:

did_tract = {'tract': 5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument': 'LSSTComCam'}

matchedVisitCoreMetrics = butler.get('matchedVisitCore_metrics', dataId=did_tract, collections=collection)

What was configured and run in the pipeline#

Consider the following pipeline task definition for analyzePreSourceTableCore:

  analyzePreSourceTableCore:
    class: lsst.analysis.tools.tasks.SourceTableVisitAnalysisTask
    config:
      connections.outputName: preSourceTableCore
      atools.skyFluxVisitStatisticMetric: SkyFluxStatisticMetric
      atools.skyFluxVisitStatisticMetric.applyContext: VisitContext
      atools.skySourceSky: SkySourceSkyPlot
      atools.skySourceFlux: SkySourceHistPlot
      python: |
        from lsst.analysis.tools.atools import *
        from lsst.analysis.tools.contexts import *

In a pipeline task definition (e.g., analyzePreSourceTableCore), the output will be called

  • {connections.outputName}_metrics for metric bundles, and

  • {connections.outputName}_atool.name_plotType for plots

An example from the above config file:

  • {connections.outputName}=preSourceTableCore

  • atool.name=SkySourceSkyPlot

  • plotType=SkyPlot

will produce the datasetType preSourceTableCore_SkySourceSky_SkyPlot.

In the pipeline for nightly validation, analyzePreSourceTableCore is defined as:

imports:
  - $DRP_PIPE_DIR/pipelines/LSSTComCamSim/DRP-ops-rehearsal-3.yaml
tasks:
  analyzePreSourceTableCore:
    class: lsst.analysis.tools.tasks.SourceTableVisitAnalysisTask
    config:
      connections.data: preSourceTable_visit
      connections.inputName: preSourceTable_visit
      connections.outputName: preSourceTableCore

This slightly reconfigures the version of “analyzePreSourceTableCore” that is imported from DRP-ops-rehearsal-3.yaml, which in turn imports from pipelines/_ingredients. The reconfiguration simply changes the input dataset.

Extracting the exact configuration from butler#

Above we described the general way to see which tasks were run and how they were configured, but given a specific task there is an associated configuration file in the butler. For example, for the analyzePreSourceTableCore task there is a configuration file with the datasetType of analyzePreSourceTableCore_config that can be obtained with butler.get and shows the exact configuration of the task.

Retrieving plots from the butler#

A quick test in a notebook will show that you cannot use butler.get to retrieve plots from the butler. To retrieve them, you will instead use the butler.retrieveArtifacts method. If you know the name of the plot dataset you wish to retrieve, an appropriate dataId, the butler has been initialized with the desired repo and the registry extracted via registry = butler.registry, and the collection name assigned to the variable collection, you can use:

plot_name = 'preSourceTableCore_skySourceFlux_HistPlot'
output_filepath = './plots/'
plot_dataset = registry.queryDatasets(plot_name, dataId=dataId)
butler.retrieveArtifacts(plot_dataset, output_filepath,
                         preserve_path=False, overwrite=True)

The two required inputs for butler.retrieveArtifacts are an iterable of DatasetRefs (in this case, obtained using registry.queryDatasets) and the path to the output destination. If you set the optional keyword preserve_path to False, the files will simply be placed in the destination directory. If this is left at its default value of True, the original path will be retained (and will contain many deeply-nested directories). Note also that overwrite=False by default.

A less optimal workaround is to retrieve the plot using:

plot_name = 'preSourceTableCore_skySourceFlux_HistPlot'
ref = butler.registry.findDataset(plot_name, dataId, collections=collections)
uri = butler.getURI(ref)
image_bytes = uri.read()

Then it can be saved (though it is preferable to use butler.retrieveArtifacts for that purpose):

file_name= uri.basename()
with open(file_name, 'wb') as file:
  file.write(image_bytes)

or displayed in a notebook:

from IPython.display import Image
Image(image_bytes)

Using the plot navigator#

The rubin plot navigator can be accessed at https://usdf-rsp.slac.stanford.edu/plot-navigator and is described in DMTN-237. This interface allows the user to quickly browse plots that are stored in the butler. To find/select first identify a collection, after clicking the collection you will be givien a list of plots that exist in that collection and can futher select the type of plot you would like to view (e.g. objectTableCore_wPerpPSFP_ColorColorFitPlot).

Nightly validation pipeline#

https://github.com/lsst/drp_pipe/blob/main/pipelines/LSSTComCamSim/nightly-validation-ops-rehearsal-3.yaml

The nightly validation pipeline described here was run during Operations Rehearsal 3.

Visit-level tasks#

This table has 3 columns: Task, datasetType, and StorageClass. The task entry links to the pipeline yaml responsible for the task configuration. The datasetType links to either a description of the metric bundle or an example plot generated as part of the nightly validation run. The StorageClass is either Plot or MetricMeasurementBundle.

Task (link to pipeline yaml)

datasetType

StorageClass

calibrate

calexpSummary_metrics

MetricMeasurementBundle

analyzeMatchedVisitCore

matchedVisitCore_metrics

MetricMeasurementBundle

matchedvisitcore-{band}-stellarphotometricrepeatability-histplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualstddevra-focalplaneplot

Plot

matchedvisitcore-{band}-stellarphotometricresiduals-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualsdec-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualsra-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualstddevdec-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability2-histplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability1-histplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability3-histplot

Plot

matchedvisitcore-{band}-stellarastrometricselfrepeatabilitydec-histplot

Plot

matchedvisitcore-{band}-stellarastrometricselfrepeatabilityra-histplot

Plot

analyzePreSourceTableCore

preSourceTableCore_metrics

MetricMeasurementBundle

presourcetablecore-skysourceflux-histplot

Plot

Tract-level tasks#

Task (link to pipeline yaml)

datasetType

StorageClass

analyzeDiaSourceTableTract

diaSourceTableTract_metrics

MetricMeasurementBundle

diasourcetabletract-streakdiasourceplot-diaskyplot

Plot

validateObjectTableCore

objectTableColumnValidate_metrics

MetricMeasurementBundle

analyzeObjectTableCore

objectTableCore_metrics

MetricMeasurementBundle

objecttablecore-{band}-skyobjectsky-skyplot

Plot

objecttablecore-xperppsfp-colorcolorfitplot

Plot

objecttablecore-{band}-shapesizefractionaldiff-scatterplotwithtwohists

Plot

objecttablecore-xperpcmodel-colorcolorfitplot

Plot

objecttablecore-{band}-e1diff-scatterplotwithtwohists

Plot

objecttablecore-wperppsfp-colorcolorfitplot

Plot

objecttablecore-wperpcmodel-colorcolorfitplot

Plot

objecttablecore-{band}-skyobjectflux-histplot

Plot

objecttablecore-{band}-e2diff-scatterplotwithtwohists

Plot

objecttablecore-{band}-cmodelbulgesizevscmodelbulgemag-scatterplotwithtwohists

Plot

objecttablecore-{band}-psfcmodelscatter-scatterplotwithtwohists

Plot

objecttablecore-{band}-cmodeldisksizevscmodeldiskmag-scatterplotwithtwohists

Plot

objecttablecore-{band}-shapesizedetradiusvspsfmag-scatterplotwithtwohists

Plot

objecttablecore-{band}-shapesizedetradiusvscmodelmag-scatterplotwithtwohists

Plot

analyzeObjectTableExtended

objectTableExtended_metrics

MetricMeasurementBundle

objecttableextended-{band}-ap12psfsky-skyplot

Plot

objecttableextended-{band}-psfcmodelsky-skyplot

Plot

propertyMapTract

propertymaptract-healsparsemap-deepcoadd-dcr-e1-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-dra-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-size-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-maglim-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-ddec-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-sky-noise-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-e2-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-exposure-time-sum-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-e1-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-e2-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-min-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-max-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-sky-background-weighted-mean-propertymapplot

Plot

Visit-level metrics#

Below we list out the metrics associated with each metric bundle at a visit level.

calexpSummary_metrics#

dataId used in examples:

did_visit_det = {'visit':7024040300001, 'skymap':'ops_rehersal_prep_2k_v1', 'instrument':'LSSTComCamSim', 'detector':0}

metricBundle: calexpSummaryMetrics (source)

Docstring: Calibrated exposure summary statistics to load from the butler

Notes: These metrics are computed outside of analysis_tools in the computeExposureSummaryStats pipetask (source),

which has the following docstring: Task to compute exposure summary statistics.

This task computes various quantities suitable for DPDD and other downstream processing at the detector centers, including:

  • psfSigma

  • psfArea

  • psfIxx

  • psfIyy

  • psfIxy

  • ra

  • dec

  • zenithDistance

  • zeroPoint

  • skyBg

  • skyNoise

  • meanVar

  • raCorners

  • decCorners

  • astromOffsetMean

  • astromOffsetStd

These additional quantities are computed from the stars in the detector:

  • psfStarDeltaE1Median

  • psfStarDeltaE2Median

  • psfStarDeltaE1Scatter

  • psfStarDeltaE2Scatter

  • psfStarDeltaSizeMedian

  • psfStarDeltaSizeScatter

  • psfStarScaledDeltaSizeScatter

These quantities are computed based on the PSF model and image mask to assess the robustness of the PSF model across a given detector (against, e.g., extrapolation instability):

  • maxDistToNearestPsf

  • psfTraceRadiusDelta

These quantities are computed to assess depth:

  • effTime

  • effTimePsfSigmaScale

  • effTimeSkyBgScale

  • effTimeZeroPointScale

metric name

value

units

psfSigma

1.506499

pix

psfArea

34.678724

psfIxx

2.258628

pix

psfIyy

2.281597

pix

psfIxy

0.049743

pix

ra

124.617999

deg

dec

-15.026213

deg

zenithDistance

17.825242

deg

zeroPoint

31.271871

mag

skyBg

1703.767764

mag

skyNoise

34.471789

mag

meanVar

1175.081472

mag

astromOffsetMean

0.005423

arcsec

astromOffsetStd

0.003085

arcsec

nPsfStar

419.000000

psfStarDeltaE1Median

-0.000103

pix

psfStarDeltaE2Median

-0.000645

pix

psfStarDeltaE1Scatter

0.008924

pix

psfStarDeltaE2Scatter

0.009482

pix

psfStarDeltaSizeMedian

0.000991

pix

psfStarDeltaSizeScatter

0.007213

pix

psfStarScaledDeltaSizeScatter

0.004785

pix

psfTraceRadiusDelta

0.012334

pix

maxDistToNearestPsf

419.527519

deg

effTime

12.083753

s

effTimePsfSigmaScale

1.127983

s

effTimeSkyBgScale

0.344765

s

effTimeZeroPointScale

1.035749

s

matchedVisitCore_metrics#

dataId used in examples:

did_tract = {'tract':5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument':'LSSTComCam'}

These metrics are for a set of “matched visits,” which is created by taking all objects from the isolated_star_sources table in a given tract, then matching all of the sourceTable catalogs to accumulate all measurements for each source. These collections can be used for repeatability measurements.

Note that although these metrics use information from individual visits, their Butler dimension is tract because they aggregate measurements from all visits contributing to a tract.

metricBundle: stellarAstrometricRepeatability1 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: AMx, ADx, and AFx (where x=[1, 2, 3]) are defined in the Observatory System Specifications (OSS) as requirement OSS-REQ-0388. AMx is a measure of astrometric repeatability on xx arcminute scales, where xx=[5, 20, 200] for x=[1, 2, 3]. ADx defines thresholds for outliers, and AFx captures the percentage of outliers exceeding the ADx outlier limit.

Defined with signal-to-noise (S/N) cuts of 50 < S/N < 50000 and a magnitude range of 17 < mag < 21.5.

stellarAstrometricRepeatability1 measures repeatability on 5 arcminute scales.

metric name

value

units

u_AM1

16.649138

mas

u_AF1

22.201517

%

u_AD1

28.129798

mas

g_AM1

15.628324

mas

g_AF1

24.470774

%

g_AD1

30.426507

mas

r_AM1

13.416911

mas

r_AF1

13.611736

%

r_AD1

22.404970

mas

i_AM1

12.607847

mas

i_AF1

11.067706

%

i_AD1

20.722490

mas

z_AM1

12.461857

mas

z_AF1

11.519684

%

z_AD1

21.046111

mas

y_AM1

12.761201

mas

y_AF1

12.620278

%

y_AD1

21.692446

mas

metricBundle: stellarAstrometricRepeatability2 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: stellarAstrometricRepeatability2 measures repeatability on 20 arcminute scales.

metric name

value

units

u_AM2

15.659163

mas

u_AF2

20.873564

%

u_AD2

27.267193

mas

g_AM2

14.838544

mas

g_AF2

23.823734

%

g_AD2

30.171673

mas

r_AM2

12.428093

mas

r_AF2

11.682237

%

r_AD2

21.131835

mas

i_AM2

11.615206

mas

i_AF2

9.139840

%

i_AD2

19.391778

mas

z_AM2

11.338962

mas

z_AF2

9.349920

%

z_AD2

19.546127

mas

y_AM2

11.638790

mas

y_AF2

10.039435

%

y_AD2

20.025457

mas

metricBundle: stellarAstrometricRepeatability3 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: stellarAstrometricRepeatability3 measures repeatability on 200 arcminute scales. There are no measurements for these metrics currently, because we do not have datasets spanning the requisite 200-arcminute scale.

metric name

value

units

u_AM3

nan

mas

u_AF3

nan

%

u_AD3

nan

mas

g_AM3

nan

mas

g_AF3

nan

%

g_AD3

nan

mas

r_AM3

nan

mas

r_AF3

nan

%

r_AD3

nan

mas

i_AM3

nan

mas

i_AF3

nan

%

i_AD3

nan

mas

z_AM3

nan

mas

z_AF3

nan

%

z_AD3

nan

mas

y_AM3

nan

mas

y_AF3

nan

%

y_AD3

nan

mas

metricBundle: stellarAstrometricSelfRepeatabilityDec (source)

Docstring: Calculate the median position RMS of point sources.

Notes: The median of the per-source RMS positional scatter in Declination. Defined with a magnitude selection of 17 < mag < 21.5.

metric name

value

units

u_dmL2AstroErr_Dec

15.141275

mas

g_dmL2AstroErr_Dec

9.422350

mas

r_dmL2AstroErr_Dec

9.224946

mas

i_dmL2AstroErr_Dec

8.756453

mas

z_dmL2AstroErr_Dec

10.908766

mas

y_dmL2AstroErr_Dec

10.780756

mas

metricBundle: stellarAstrometricSelfRepeatabilityRA (source)

Docstring: Calculate the median position RMS of point sources.

Notes: The median of the per-source RMS positional scatter in Right Ascension. Defined with a magnitude selection of 17 < mag < 21.5.

metric name

value

units

u_dmL2AstroErr_RA

16.201780

mas

g_dmL2AstroErr_RA

15.396698

mas

r_dmL2AstroErr_RA

10.670404

mas

i_dmL2AstroErr_RA

10.214307

mas

z_dmL2AstroErr_RA

11.032055

mas

y_dmL2AstroErr_RA

11.842188

mas

metricBundle: stellarPhotometricRepeatability (source)

Docstring: Compute photometric repeatability from multiple measurements of a set of stars. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and per-group quantities are computed (e.g., a representative S/N for the group based on the median of associated per-source measurements). Third, additional per-group criteria are applied. Fourth, summary statistics are computed for the filtered groups.

Notes: The median and outlier fraction of the per-source RMS magnitude scatter. Defined for stars with S/N > 200. Metrics with “stellarPhotRepeatStdev” in their names correspond to PA1 defined in the OSS as requirement OSS-REQ-0387. Metrics with “stellarPhotRepeatOutlierFraction” correspond to PF1 (the fraction of outliers exceeding the threshold PA2) from the same requirement, with PA2 (the outlier threshold) set to 15 mmag by default. The “_ct” metrics simply capture the number of stars that went into the calculation.

metric name

value

units

u_stellarPhotRepeatStdev

10.082369

mmag

u_stellarPhotRepeatOutlierFraction

8.125000

%

u_ct

160.0

ct

g_stellarPhotRepeatStdev

11.278285

mmag

g_stellarPhotRepeatOutlierFraction

5.925926

%

g_ct

540.0

ct

r_stellarPhotRepeatStdev

9.653192

mmag

r_stellarPhotRepeatOutlierFraction

7.682292

%

r_ct

768.0

ct

i_stellarPhotRepeatStdev

6.544506

mmag

i_stellarPhotRepeatOutlierFraction

0.360144

%

i_ct

833.0

ct

z_stellarPhotRepeatStdev

7.944945

mmag

z_stellarPhotRepeatOutlierFraction

1.505646

%

z_ct

797.0

ct

y_stellarPhotRepeatStdev

8.168943

mmag

y_stellarPhotRepeatOutlierFraction

0.319489

%

y_ct

313.0

ct

metricBundle: stellarPhotometricRepeatabilityCalib (source)

Docstring: Compute photometric repeatability from multiple measurements of a set of stars. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and per-group quantities are computed (e.g., a representative S/N for the group based on the median of associated per-source measurements). Third, additional per-group criteria are applied. Fourth, summary statistics are computed for the filtered groups.

metric name

value

units

u_stellarPhotRepeatStdev

7.905896

mmag

u_stellarPhotRepeatOutlierFraction

1.492537

%

u_ct

134.0

ct

g_stellarPhotRepeatStdev

9.951525

mmag

g_stellarPhotRepeatOutlierFraction

5.023923

%

g_ct

418.0

ct

r_stellarPhotRepeatStdev

11.208904

mmag

r_stellarPhotRepeatOutlierFraction

8.910891

%

r_ct

505.0

ct

i_stellarPhotRepeatStdev

3.709744

mmag

i_stellarPhotRepeatOutlierFraction

0.000000

%

i_ct

492.0

ct

z_stellarPhotRepeatStdev

3.154263

mmag

z_stellarPhotRepeatOutlierFraction

0.000000

%

z_ct

423.0

ct

y_stellarPhotRepeatStdev

6.970876

mmag

y_stellarPhotRepeatOutlierFraction

0.000000

%

y_ct

149.0

ct

metricBundle: stellarPhotometricResiduals (source)

Docstring: Plot mean photometric residuals as a function of the position on the focal plane. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and the per-group magnitude is computed. The residuals between the individual sources and these magnitudes are then used to construct a plot showing the mean residual as a function of the focal-plane position.

Notes: In addition to producing plots of the residuals as a function of focal plane position, the median, standard deviation (“Stdev”), and the median absolute deviation \(\sigma_{MAD}\) (“SigmaMad”) are reported for the tract. Because these are residuals about the median, the median residual should be 0 by construction.

metric name

value

units

u_photResidTractSigmaMad

7.106819

mmag

u_photResidTractStdev

14.064299

mmag

u_photResidTractMedian

0.000000

mmag

g_photResidTractSigmaMad

8.182756

mmag

g_photResidTractStdev

10.718751

mmag

g_photResidTractMedian

0.000000

mmag

r_photResidTractSigmaMad

5.673041

mmag

r_photResidTractStdev

6.913324

mmag

r_photResidTractMedian

0.000000

mmag

i_photResidTractSigmaMad

5.870441

mmag

i_photResidTractStdev

6.884908

mmag

i_photResidTractMedian

0.000000

mmag

z_photResidTractSigmaMad

5.960165

mmag

z_photResidTractStdev

8.674804

mmag

z_photResidTractMedian

0.000000

mmag

y_photResidTractSigmaMad

7.328806

mmag

y_photResidTractStdev

8.854357

mmag

y_photResidTractMedian

0.000000

mmag

metricBundle: stellarPhotometricResidualsCalib (source)

Docstring: Plot mean photometric residuals as a function of the position on the focal plane. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and the per-group magnitude is computed. The residuals between the individual sources and these magnitudes are then used to construct a plot showing the mean residual as a function of the focal-plane position.

metric name

value

units

u_photResidTractSigmaMad

6.159587

mmag

u_photResidTractStdev

10.387054

mmag

u_photResidTractMedian

0.000000

mmag

g_photResidTractSigmaMad

7.016645

mmag

g_photResidTractStdev

9.551593

mmag

g_photResidTractMedian

0.000000

mmag

r_photResidTractSigmaMad

4.761156

mmag

r_photResidTractStdev

6.989406

mmag

r_photResidTractMedian

0.000000

mmag

i_photResidTractSigmaMad

5.027914

mmag

i_photResidTractStdev

7.205964

mmag

i_photResidTractMedian

0.000000

mmag

z_photResidTractSigmaMad

4.924935

mmag

z_photResidTractStdev

7.766163

mmag

z_photResidTractMedian

0.000000

mmag

y_photResidTractSigmaMad

7.862110

mmag

y_photResidTractStdev

9.141854

mmag

y_photResidTractMedian

0.000000

mmag

sourceObjectTable_metrics#

dataId used in examples:

did_visit_det = {'visit': 2024120500075, 'skymap': 'lsst_cells_v1', 'instrument': 'LSSTComCam', 'detector': 4}

metricBundle: astromColorDiffMetrics (source)

Docstring: Calculate the AB1 and ABF1 metrics from the difference between the target and reference catalog coordinates.

metric name

value

units

AB1_RA

13.946738

mas

ABF1_RA

14.849624

%

AB1_Dec

8.169414

mas

ABF1_Dec

2.067669

%

AB1_tot

16.971670

mas

ABF1_tot

24.812030

%

preSourceTableCore_metrics#

dataId used in examples:

did_visit_det = {'visit': 2024120500075, 'skymap': 'lsst_cells_v1', 'instrument': 'LSSTComCam', 'detector': 4}

metricBundle: skyFluxVisitStatisticMetric source

Docstring: Calculate sky flux statistics. This uses the 9-pixel aperture flux for sky sources/objects, and returns multiple statistics on the measured fluxes. Note that either visitContext (measurement on sourceTable) or coaddContext (measurement on objectTable) must be specified.

metric name

value

units

medianSky

-2.348488

nJy

meanSky

-7.034565

nJy

stdevSky

618.708919

nJy

sigmaMADSky

600.762855

nJy

Note that the default visit (7024040300001) used for this document did not have an entry for preSourceTableCore_metrics, so these values are for visit 7024040300002.

Tract-level metrics#

diaSourceTableTract_metrics#

dataId used in examples:

did_tract = {'tract': 5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument': 'LSSTComCam'}

metricBundle: NumDiaSources (source)

Docstring: Count all DiaSources that do not have known bad/quality flags.

metric name

value

units

numDiaSources

96643.0

ct

metricBundle: NumStreakCenterDiaSources (source)

Docstring: Count DiaSources that have the STREAK flag in the center of the source.

metric name

value

units

numStreakCenterDiaSources

115.0

ct

metricBundle: NumStreakDiaSources (source)

Docstring: Count DiaSources that fall in a STREAK flag footprint region.

metric name

value

units

numStreakDiaSources

116.0

ct

objectTableColumnValidate_metrics#

dataId used in examples:

did_tract = {'tract': 5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument': 'LSSTComCam'}

metricBundle: validCmodelFluxMetric (source)

Docstring: Calculate the fraction of values in a column that have valid numerical values (i.e., not NaN), and that fall within the specified “reasonable” range for the values.

metric name

value

units

u_validFracColumn

44.901217

%

u_nanFracColumn

42.851855

%

g_validFracColumn

90.825567

%

g_nanFracColumn

5.225247

%

r_validFracColumn

89.916261

%

r_nanFracColumn

6.306434

%

i_validFracColumn

89.704590

%

i_nanFracColumn

5.970174

%

z_validFracColumn

86.220004

%

z_nanFracColumn

6.772176

%

y_validFracColumn

67.222752

%

y_nanFracColumn

15.830500

%

metricBundle: validPsfFluxMetric (source)

Docstring: Calculate the fraction of values in a column that have valid numerical values (i.e., not NaN), and that fall within the specified “reasonable” range for the values.

metric name

value

units

u_validFracColumn

46.466084

%

u_nanFracColumn

40.227490

%

g_validFracColumn

93.893007

%

g_nanFracColumn

1.868023

%

r_validFracColumn

92.928092

%

r_nanFracColumn

2.955407

%

i_validFracColumn

92.475233

%

i_nanFracColumn

2.573486

%

z_validFracColumn

88.955097

%

z_nanFracColumn

3.368476

%

y_validFracColumn

69.016903

%

y_nanFracColumn

12.810026

%

objectTableCore_metrics#

dataId used in examples:

did_tract = {'tract': 5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument': 'LSSTComCam'}

metricBundle: blendMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender for blends with multiple children

metric name

value

units

numBlends

46065.000000

meanBlendIterations

16.823771

meanBlendLogL

-1053145.375000

metricBundle: coaddInputCount (source)

Docstring: skyPlot and associated metrics indicating the number of exposures that have gone into creating a coadd.

metric name

value

units

u_inputCount_median

5.0

ct

u_inputCount_sigmaMad

4.4

ct

u_inputCount_mean

5.9

ct

g_inputCount_median

109.0

ct

g_inputCount_sigmaMad

89.0

ct

g_inputCount_mean

102.1

ct

r_inputCount_median

130.0

ct

r_inputCount_sigmaMad

100.8

ct

r_inputCount_mean

120.0

ct

i_inputCount_median

85.0

ct

i_inputCount_sigmaMad

72.6

ct

i_inputCount_mean

83.2

ct

z_inputCount_median

95.0

ct

z_inputCount_sigmaMad

69.7

ct

z_inputCount_mean

88.0

ct

y_inputCount_median

17.0

ct

y_inputCount_sigmaMad

10.4

ct

y_inputCount_mean

15.6

ct

metricBundle: coaddPatchCount (source)

Docstring: An atool to count the patches in a tract. Counts the patches that make it into the objectTable_tract.

metric name

value

units

u_patchCount

30.000000

g_patchCount

47.000000

r_patchCount

46.000000

i_patchCount

47.000000

z_patchCount

45.000000

y_patchCount

40.000000

metricBundle: e1Diff (source)

Docstring: The difference between E1 and E1 PSF plotted on a scatter plot. Used in coaddQualityCore.

Notes: Statistics of residual of e1 ellipticity measurement of sources relative to the PSF.

metric name

value

units

u_highSNStars_median

-0.006962

pix

u_highSNStars_sigmaMad

0.012748

pix

u_highSNStars_count

7.0

ct

u_lowSNStars_median

0.000510

pix

u_lowSNStars_sigmaMad

0.006357

pix

u_lowSNStars_count

137.0

ct

g_highSNStars_median

0.001289

pix

g_highSNStars_sigmaMad

0.003274

pix

g_highSNStars_count

458.0

ct

g_lowSNStars_median

0.000393

pix

g_lowSNStars_sigmaMad

0.004051

pix

g_lowSNStars_count

1522.0

ct

r_highSNStars_median

0.000526

pix

r_highSNStars_sigmaMad

0.001800

pix

r_highSNStars_count

638.0

ct

r_lowSNStars_median

0.000351

pix

r_lowSNStars_sigmaMad

0.002744

pix

r_lowSNStars_count

1954.0

ct

i_highSNStars_median

0.000453

pix

i_highSNStars_sigmaMad

0.001744

pix

i_highSNStars_count

680.0

ct

i_lowSNStars_median

0.000210

pix

i_lowSNStars_sigmaMad

0.002965

pix

i_lowSNStars_count

2218.0

ct

z_highSNStars_median

-0.000107

pix

z_highSNStars_sigmaMad

0.002300

pix

z_highSNStars_count

610.0

ct

z_lowSNStars_median

-0.000013

pix

z_lowSNStars_sigmaMad

0.003097

pix

z_lowSNStars_count

1917.0

ct

y_highSNStars_median

0.000569

pix

y_highSNStars_sigmaMad

0.002821

pix

y_highSNStars_count

102.0

ct

y_lowSNStars_median

0.000041

pix

y_lowSNStars_sigmaMad

0.003921

pix

y_lowSNStars_count

772.0

ct

metricBundle: e2Diff (source)

Docstring: The difference between E2 and E2 PSF plotted on a scatter plot for coadd level data. Used in coaddQualityCore.

Notes: Statistics of residual of e2 ellipticity measurement of sources relative to the PSF.

metric name

value

units

u_highSNStars_median

-0.007902

pix

u_highSNStars_sigmaMad

0.011632

pix

u_highSNStars_count

7.0

ct

u_lowSNStars_median

0.000784

pix

u_lowSNStars_sigmaMad

0.005373

pix

u_lowSNStars_count

137.0

ct

g_highSNStars_median

0.000637

pix

g_highSNStars_sigmaMad

0.002228

pix

g_highSNStars_count

458.0

ct

g_lowSNStars_median

0.000124

pix

g_lowSNStars_sigmaMad

0.003238

pix

g_lowSNStars_count

1522.0

ct

r_highSNStars_median

0.000508

pix

r_highSNStars_sigmaMad

0.001917

pix

r_highSNStars_count

638.0

ct

r_lowSNStars_median

0.000388

pix

r_lowSNStars_sigmaMad

0.002888

pix

r_lowSNStars_count

1954.0

ct

i_highSNStars_median

0.000883

pix

i_highSNStars_sigmaMad

0.002213

pix

i_highSNStars_count

680.0

ct

i_lowSNStars_median

0.000855

pix

i_lowSNStars_sigmaMad

0.003093

pix

i_lowSNStars_count

2218.0

ct

z_highSNStars_median

-0.000148

pix

z_highSNStars_sigmaMad

0.001759

pix

z_highSNStars_count

610.0

ct

z_lowSNStars_median

-0.000071

pix

z_lowSNStars_sigmaMad

0.002598

pix

z_lowSNStars_count

1917.0

ct

y_highSNStars_median

-0.000236

pix

y_highSNStars_sigmaMad

0.002834

pix

y_highSNStars_count

102.0

ct

y_lowSNStars_median

-0.000439

pix

y_lowSNStars_sigmaMad

0.003815

pix

y_lowSNStars_count

772.0

ct

metricBundle: isolatedDeblenderMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender for parents with only a single child peak.

metric name

value

units

numIsolated

67992.000000

meanIsolatedIterations

16.082113

meanIsolatedLogL

-677.472961

metricBundle: parentDeblenderMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender

metric name

value

units

numParents

114061.000000

numDeblendFailed

0.000000

numIncompleteData

45524.000000

numDetectedPeaks

363411.000000

numDeblendedChildren

359466.000000

metricBundle: psfCModelScatter (source)

Docstring: Creates a scatterPlot showing the difference between PSF and CModel mags

Notes: Metrics give summary statistics of the PSF-cmodel magnitudes.

metric name

value

units

u_psf_cModel_diff_median

1.062645

mmag

u_psf_cModel_diff_sigmaMad

4.325282

mmag

u_psf_cModel_diff_mean

10.745125

mmag

g_psf_cModel_diff_median

-2.305251

mmag

g_psf_cModel_diff_sigmaMad

2.320611

mmag

g_psf_cModel_diff_mean

-1.821309

mmag

r_psf_cModel_diff_median

-1.147710

mmag

r_psf_cModel_diff_sigmaMad

2.572899

mmag

r_psf_cModel_diff_mean

-0.521258

mmag

i_psf_cModel_diff_median

-0.576176

mmag

i_psf_cModel_diff_sigmaMad

2.773069

mmag

i_psf_cModel_diff_mean

-0.551983

mmag

z_psf_cModel_diff_median

-1.466141

mmag

z_psf_cModel_diff_sigmaMad

2.297925

mmag

z_psf_cModel_diff_mean

-1.435888

mmag

y_psf_cModel_diff_median

-2.427449

mmag

y_psf_cModel_diff_sigmaMad

2.106005

mmag

y_psf_cModel_diff_mean

-1.936034

mmag

metricBundle: shapeSizeFractionalDiff (source)

Docstring: The difference between shape and shape PSF plotted on a scatter plot for coadd level data. Used in coaddQualityCore.

Notes: Fractional size residuals (\(S/S_{PSF} - 1\)). Stars with “highSN” have S/N > 2700, and “lowSN” have S/N > 500.

metric name

value

units

u_highSNStars_median

-0.018624

pix

u_highSNStars_sigmaMad

0.028057

pix

u_highSNStars_count

7.0

ct

u_lowSNStars_median

-0.001748

pix

u_lowSNStars_sigmaMad

0.006542

pix

u_lowSNStars_count

137.0

ct

g_highSNStars_median

0.000799

pix

g_highSNStars_sigmaMad

0.005744

pix

g_highSNStars_count

458.0

ct

g_lowSNStars_median

0.000275

pix

g_lowSNStars_sigmaMad

0.006641

pix

g_lowSNStars_count

1522.0

ct

r_highSNStars_median

-0.000390

pix

r_highSNStars_sigmaMad

0.003146

pix

r_highSNStars_count

638.0

ct

r_lowSNStars_median

0.000291

pix

r_lowSNStars_sigmaMad

0.003772

pix

r_lowSNStars_count

1954.0

ct

i_highSNStars_median

-0.001118

pix

i_highSNStars_sigmaMad

0.003354

pix

i_highSNStars_count

680.0

ct

i_lowSNStars_median

-0.000326

pix

i_lowSNStars_sigmaMad

0.003610

pix

i_lowSNStars_count

2218.0

ct

z_highSNStars_median

-0.000394

pix

z_highSNStars_sigmaMad

0.003151

pix

z_highSNStars_count

610.0

ct

z_lowSNStars_median

0.000573

pix

z_lowSNStars_sigmaMad

0.003387

pix

z_lowSNStars_count

1917.0

ct

y_highSNStars_median

-0.004150

pix

y_highSNStars_sigmaMad

0.004891

pix

y_highSNStars_count

102.0

ct

y_lowSNStars_median

-0.000406

pix

y_lowSNStars_sigmaMad

0.003624

pix

y_lowSNStars_count

772.0

ct

metricBundle: skippedDeblenderMetrics (source)

Docstring: Calculate metrics based on blends skipped by the deblender

metric name

value

units

numSkippedBlends

4.000000

numBlendParentTooBig

4.000000

numBlendTooManyPeaks

0.000000

numBlendTooManyMasked

0.000000

numSkippedPeaks

3945.000000

metricBundle: skyFluxStatisticMetric (source)

Docstring: Calculate sky flux statistics. This uses the 9-pixel aperture flux for sky sources/objects, and returns multiple statistics on the measured fluxes. Note that either visitContext (measurement on sourceTable) or coaddContext (measurement on objectTable) must be specified.

metric name

value

units

u_medianSky

-22.670816

nJy

u_meanSky

-44.955825

nJy

u_stdevSky

458.312329

nJy

u_sigmaMADSky

358.909370

nJy

g_medianSky

2.320502

nJy

g_meanSky

5.908797

nJy

g_stdevSky

122.467253

nJy

g_sigmaMADSky

65.140802

nJy

r_medianSky

-0.373212

nJy

r_meanSky

2.401479

nJy

r_stdevSky

217.256946

nJy

r_sigmaMADSky

89.284979

nJy

i_medianSky

-9.153765

nJy

i_meanSky

-8.731332

nJy

i_stdevSky

225.413986

nJy

i_sigmaMADSky

132.290373

nJy

z_medianSky

-38.847815

nJy

z_meanSky

-37.734689

nJy

z_stdevSky

468.570872

nJy

z_sigmaMADSky

234.272551

nJy

y_medianSky

-178.689968

nJy

y_meanSky

-230.084323

nJy

y_stdevSky

1662.990931

nJy

y_sigmaMADSky

1127.054293

nJy

metricBundle: wPerpCModel (source)

Docstring: No docstring

Notes: Width of stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with cmodel magnitudes.

metric name

value

units

wPerp_cModelFlux_sigmaMAD

14.941928

mmag

wPerp_cModelFlux_median

0.408690

mmag

metricBundle: wPerpPSFP (source)

Docstring: No docstring

Notes: Width of the blue portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with PSF magnitudes.

metric name

value

units

wPerp_psfFlux_sigmaMAD

14.965038

mmag

wPerp_psfFlux_median

0.354766

mmag

metricBundle: xPerpCModel (source)

Docstring: No docstring

Notes: Width of the red portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with cmodel magnitudes.

metric name

value

units

xPerp_cModelFlux_sigmaMAD

56.216178

mmag

xPerp_cModelFlux_median

1.497274

mmag

metricBundle: xPerpPSFP (source)

Docstring: No docstring

Notes: Width of the red portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with PSF magnitudes.

metric name

value

units

xPerp_psfFlux_sigmaMAD

55.733773

mmag

xPerp_psfFlux_median

0.950084

mmag

metricBundle: yPerpCModel (source)

Docstring: No docstring

metric name

value

units

yPerp_cModelFlux_sigmaMAD

9.130749

mmag

yPerp_cModelFlux_median

-0.721818

mmag

metricBundle: yPerpPSF (source)

Docstring: No docstring

metric name

value

units

yPerp_psfFlux_sigmaMAD

8.156364

mmag

yPerp_psfFlux_median

-0.542668

mmag

Note the erroneous “P” at the end of “wPerpPSFP” and “xPerpPSFP”. This is due to a typo in the pipelines code.

objectTableExtended_metrics#

dataId used in examples:

did_tract = {'tract': 5063, 'skymap': 'lsst_cells_v1', 'band': 'g', 'instrument': 'LSSTComCam'}

metricBundle: ap12PsfSky (source)

Docstring: No docstring

Notes: Difference between magnitudes in a 12-pixel aperture and PSF magnitudes. Metrics summarize rolled-up statistics of the plotted quantities.

metric name

value

units

g_ap12_psf_diff_median

-2.497167

mmag

g_ap12_psf_diff_sigmaMad

7.382115

mmag

g_ap12_psf_diff_mean

-3.173155

mmag

r_ap12_psf_diff_median

-1.285786

mmag

r_ap12_psf_diff_sigmaMad

4.182110

mmag

r_ap12_psf_diff_mean

-3.415648

mmag

i_ap12_psf_diff_median

-1.689628

mmag

i_ap12_psf_diff_sigmaMad

4.563705

mmag

i_ap12_psf_diff_mean

-3.558899

mmag

Visit-level plots#

matchedVisitCore#

_images/matchedvisitcore-%7Bband%7D-stellarphotometricrepeatability-histplot.png

Fig. 1 Plot Name: matchedVisitCore_g_stellarPhotometricRepeatability_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualstddevra-focalplaneplot.png

Fig. 2 Plot Name: matchedVisitCore_g_stellarAstrometricResidualStdDevRA_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarphotometricresiduals-focalplaneplot.png

Fig. 3 Plot Name: matchedVisitCore_g_stellarPhotometricResiduals_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualsdec-focalplaneplot.png

Fig. 4 Plot Name: matchedVisitCore_g_stellarAstrometricResidualsDec_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualsra-focalplaneplot.png

Fig. 5 Plot Name: matchedVisitCore_g_stellarAstrometricResidualsRA_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualstddevdec-focalplaneplot.png

Fig. 6 Plot Name: matchedVisitCore_g_stellarAstrometricResidualStdDevDec_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability1-histplot.png

Fig. 7 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability1_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability2-histplot.png

Fig. 8 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability2_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability3-histplot.png

Fig. 9 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability3_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricselfrepeatabilitydec-histplot.png

Fig. 10 Plot Name: matchedVisitCore_g_stellarAstrometricSelfRepeatabilityDec_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricselfrepeatabilityra-histplot.png

Fig. 11 Plot Name: matchedVisitCore_g_stellarAstrometricSelfRepeatabilityRA_HistPlot#

Associated metrics: matchedVisitCore_metrics

preSourceTableCore#

_images/presourcetablecore-skysourceflux-histplot.png

Fig. 12 Plot Name: preSourceTableCore_skySourceFlux_HistPlot#

Associated metrics: preSourceTableCore_metrics

Tract-level plots#

diaSourceTableTract#

_images/diasourcetabletract-streakdiasourceplot-diaskyplot.png

Fig. 13 Plot Name: diaSourceTableTract_streakDiaSourcePlot_DiaSkyPlot#

Associated metrics: diaSourceTableTract_metrics

objectTableCore#

_images/objecttablecore-%7Bband%7D-skyobjectsky-skyplot.png

Fig. 14 Plot Name: objectTableCore_g_skyObjectSky_SkyPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-skyobjectflux-histplot.png

Fig. 15 Plot Name: objectTableCore_g_skyObjectFlux_HistPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-xperppsfp-colorcolorfitplot.png

Fig. 16 Plot Name: objectTableCore_xPerpPSFP_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-xperpcmodel-colorcolorfitplot.png

Fig. 17 Plot Name: objectTableCore_xPerpCModel_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-wperppsfp-colorcolorfitplot.png

Fig. 18 Plot Name: objectTableCore_wPerpPSFP_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-wperpcmodel-colorcolorfitplot.png

Fig. 19 Plot Name: objectTableCore_wPerpCModel_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizefractionaldiff-scatterplotwithtwohists.png

Fig. 20 Plot Name: objectTableCore_g_shapeSizeFractionalDiff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizedetradiusvspsfmag-scatterplotwithtwohists.png

Fig. 21 Plot Name: objectTableCore_g_shapeSizeDetRadiusVsPsfMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizedetradiusvscmodelmag-scatterplotwithtwohists.png

Fig. 22 Plot Name: objectTableCore_g_shapeSizeDetRadiusVsCmodelMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-e1diff-scatterplotwithtwohists.png

Fig. 23 Plot Name: objectTableCore_g_e1Diff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-e2diff-scatterplotwithtwohists.png

Fig. 24 Plot Name: objectTableCore_g_e2Diff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-cmodelbulgesizevscmodelbulgemag-scatterplotwithtwohists.png

Fig. 25 Plot Name: objectTableCore_g_cModelBulgeSizeVsCmodelBulgeMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-cmodeldisksizevscmodeldiskmag-scatterplotwithtwohists.png

Fig. 26 Plot Name: objectTableCore_g_cModelDiskSizeVsCmodelDiskMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-psfcmodelscatter-scatterplotwithtwohists.png

Fig. 27 Plot Name: objectTableCore_g_psfCModelScatter_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

objectTableExtended#

_images/objecttableextended-%7Bband%7D-ap12psfsky-skyplot.png

Fig. 28 Plot Name: objectTableExtended_g_ap12PsfSky_SkyPlot#

Associated metrics: objectTableExtended_metrics

_images/objecttableextended-%7Bband%7D-psfcmodelsky-skyplot.png

Fig. 29 Plot Name: objectTableExtended_g_psfCModelSky_SkyPlot#

Associated metrics: objectTableExtended_metrics

PropertyMapTract#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-dra-weighted-mean-propertymapplot.png

Fig. 30 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_dra_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-ddec-weighted-mean-propertymapplot.png

Fig. 31 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_ddec_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-size-weighted-mean-propertymapplot.png

Fig. 32 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_size_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-maglim-weighted-mean-propertymapplot.png

Fig. 33 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_maglim_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-sky-noise-weighted-mean-propertymapplot.png

Fig. 34 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_sky_noise_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-e1-weighted-mean-propertymapplot.png

Fig. 35 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_e1_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-e2-weighted-mean-propertymapplot.png

Fig. 36 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_e2_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-e1-weighted-mean-propertymapplot.png

Fig. 37 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_e1_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-e2-weighted-mean-propertymapplot.png

Fig. 38 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_e2_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-exposure-time-sum-propertymapplot.png

Fig. 39 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_exposure_time_sum_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-mean-propertymapplot.png

Fig. 40 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-min-propertymapplot.png

Fig. 41 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_min_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-max-propertymapplot.png

Fig. 42 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_max_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-sky-background-weighted-mean-propertymapplot.png

Fig. 43 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_sky_background_weighted_mean_PropertyMapPlot#