Metrics and Plots Available in Operations Rehearsal 3#

Abstract

This technote explores the metrics/plots generated by the Nightly Validation Pipeline for Operations Rehearsal 3. We describe the methods used to aggregate these plots and metrics, list metrics and plots created by each task, and provide examples of each metricBundle / Plot produced.

Intro#

This document was created as part of the Operations Rehearsal 3, and is not intended to be a definitive source/documentation for plots and metrics. Instead, the hope is that this document can help others learn how to determine what plots/metrics exist and how to access them.

To facilitate this we describe the methods we used to find, access and understand the data products created when running the data reduction pipeline (DRP). This incudes:

Then we list out the tasks in the Nightly Validation Pipeline that generate metrics and plots. For each task we link the pipeline yaml that configures the task (tagged to w_2024_14) and examples of the metricMeasurementBundles and Plots created by each task. This should allow for a quick exploration of the data products produced as a part of this pipeline.

For each metricBundle we list an example dataId used, the metricBundle’s name, its atools docstring, any additional notes, and an example result. We split these into Visit-level metrics and Tract-level metrics.

Finally, for each plot datasetType we show an example version of the plot, again split into Visit-level plots and Tract-level metrics.

The code used to generate the plots and figures for this technote can be found in the notebook atools_metrics_plots_census-OR3.ipynb

Finding and accessing data products#

In this section we describe the ways we determined which metrics and plots were created by the nightly validation pipeline.

Which collections to use#

For Operations Rehearsal 3 the data reduction campaigns are listed in confluence at https://confluence.lsstcorp.org/display/DM/Campaigns. On that page we can see the following information for the Ops Rehearsal: Daily Validation Pipeline in the collection names cell:

repo = /repo/embargo
Intra-night (step1 + step2a processing): LSSTComCamSim/quickLook/24
    "quickLook" is a misnomer, this is actually nightly validation. Will fix this after the ops rehearsal.
Full (step3+) run: LSSTComCamSim/runs/nightlyvalidation/{day_obs}/d_2024_03_29/DM-43612

This indicates that we should use the following collections to explore the nightly-validation data products:

collections_nv = ['LSSTComCamSim/runs/nightlyvalidation/20240402/d_2024_03_29/DM-43612',
                  'LSSTComCamSim/runs/nightlyvalidation/20240403/d_2024_03_29/DM-43612',
                  'LSSTComCamSim/runs/nightlyvalidation/20240404/d_2024_03_29/DM-43612',
                  'LSSTComCamSim/quickLook/24']

For the intermittent cumulative DRP use the following collections:

collections_icDRP = ['LSSTComCamSim/runs/intermittentcumulativeDRP/20240402_03_04/d_2024_03_29/DM-43865',
                    'LSSTComCamSim/quickLook/24']

What tools/metrics/plots exist#

To see what metrics exist in a given butler collection (note that this assumes the butler has been initialized with the desired repo, the registry extracted via registry = butler.registry, and the collection name assigned to the variable collection), execute the following. This code block finds all datasetTypes with storageClass of MetricMeasurementBundle.

metrics_datasets = []

for datasetType in registry.queryDatasetTypes():
    if registry.queryDatasets(datasetType, collections=collection).any(execute=False, exact=False):
        if datasetType.storageClass_name == 'MetricMeasurementBundle':
            print(datasetType)
            metrics_datasets.append(datasetType)

A similar query with MetricMeasurementBundle replaced by Plot will show you all of the plot datasetTypes that have been defined for the given repo/collection. Some examples are shown below:

DatasetType('matchedVisitCore_metrics', {instrument, skymap, tract}, MetricMeasurementBundle)
DatasetType('matchedVisitCore_g_stellarAstrometricResidualStdDevDec_FocalPlanePlot', {instrument, skymap, tract}, Plot)
DatasetType('preSourceTableCore_skySourceFlux_HistPlot', {band, instrument, physical_filter, visit}, Plot)
DatasetType('objectTableExtended_r_ap12PsfSky_SkyPlot', {skymap, tract}, Plot)

This query compiles a list of datasetType objects, which include the butler dimensions necessary to retrieve the dataset (the items included within the curly braces above; for example, to retrieve matchedVisitCore_metrics from the butler, one would need to specify the desired instrument, skymap, and tract in the dataId passed to the butler). An example of how to retrieve one of these:

did_tract = {'tract':9813, 'skymap':'ops_rehersal_prep_2k_v1', 'instrument':'LSSTComCamSim'}

matchedVisitCoreMetrics = butler.get('matchedVisitCore_metrics', dataId=did_tract, collections=collection)

What was configured and run in the pipeline#

Consider the following pipeline task definition for analyzePreSourceTableCore:

  analyzePreSourceTableCore:
    class: lsst.analysis.tools.tasks.SourceTableVisitAnalysisTask
    config:
      connections.outputName: preSourceTableCore
      atools.skyFluxVisitStatisticMetric: SkyFluxStatisticMetric
      atools.skyFluxVisitStatisticMetric.applyContext: VisitContext
      atools.skySourceSky: SkySourceSkyPlot
      atools.skySourceFlux: SkySourceHistPlot
      python: |
        from lsst.analysis.tools.atools import *
        from lsst.analysis.tools.contexts import *

In a pipeline task definition (e.g., analyzePreSourceTableCore), the output will be called

  • {connections.outputName}_metrics for metric bundles, and

  • {connections.outputName}_atool.name_plotType for plots

An example from the above config file:

  • {connections.outputName}=preSourceTableCore

  • atool.name=SkySourceSkyPlot

  • plotType=SkyPlot

will produce the datasetType preSourceTableCore_SkySourceSky_SkyPlot.

In the pipeline for nightly validation, analyzePreSourceTableCore is defined as:

imports:
  - $DRP_PIPE_DIR/pipelines/LSSTComCamSim/DRP-ops-rehearsal-3.yaml
tasks:
  analyzePreSourceTableCore:
    class: lsst.analysis.tools.tasks.SourceTableVisitAnalysisTask
    config:
      connections.data: preSourceTable_visit
      connections.inputName: preSourceTable_visit
      connections.outputName: preSourceTableCore

This slightly reconfigures the version of “analyzePreSourceTableCore” that is imported from DRP-ops-rehearsal-3.yaml, which in turn imports from pipelines/_ingredients. The reconfiguration simply changes the input dataset.

Extracting the exact configuration from butler#

Above we described the general way to see which tasks were run and how they were configured, but given a specific task there is an associated configuration file in the butler. For example, for the analyzePreSourceTableCore task there is a configuration file with the datasetType of analyzePreSourceTableCore_config that can be obtained with butler.get and shows the exact configuration of the task.

Retrieving plots from the butler#

A quick test in a notebook will show that you can not use butler.get to retrieve plots from the butler.

One workaround is to retrieve the plot using:

plot_name = 'preSourceTableCore_skySourceFlux_HistPlot'
ref = butler.registry.findDataset(plot_name, dataId, collections=collections)
uri = butler.getURI(ref)
image_bytes = uri.read()

Then it can be saved:

file_name= uri.basename()
with open(file_name, 'wb') as file:
  file.write(image_bytes)

or displayed in a notebook:

from IPython.display import Image
Image(image_bytes)

Using the plot navigator#

The rubin plot navigator can be accessed at https://usdf-rsp.slac.stanford.edu/plot-navigator/dashboard_gen3 and is described in DMTN-237. This interface allows the user to quickly browse plots that are stored in the butler. To find/select a plot the drop down menus in the top left are used. For example, by selecting the following:

repo: /repo/embargo
collection: LSSTComCamSim/runs/nightlyvalidation/20240402/d_2024_03_29/DM-43612
Tab: Tract
Skymap: ops_rehersal_prep_2k_v1 # note mispelling
Tract: 2494
Plots: matchedVisitCore_g_stellarAstrometricRepeatability1

We can display the plot shown in the screenshot below.

_images/plot_navigator.png

Fig. 1 Example of using the plot navigator to display the matchedVisitCore_g_stellarAstrometricRepeatability1_histPlot.#

Nightly validation pipeline#

https://github.com/lsst/drp_pipe/blob/main/pipelines/LSSTComCamSim/nightly-validation-ops-rehearsal-3.yaml

Visit-level tasks#

This table has 3 columns: Task, datasetType, and StorageClass. The task entry links to the pipeline yaml responsible for the task configuration. The datasetType links to either a description of the metric bundle or an example plot generated as part of the nightly validation run. The StorageClass is either Plot or MetricMeasurementBundle.

Task (link to pipeline yaml)

datasetType

StorageClass

calibrate

calexpSummary_metrics

MetricMeasurementBundle

analyzeMatchedVisitCore

matchedVisitCore_metrics

MetricMeasurementBundle

matchedvisitcore-{band}-stellarphotometricrepeatability-histplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualstddevra-focalplaneplot

Plot

matchedvisitcore-{band}-stellarphotometricresiduals-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualsdec-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualsra-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricresidualstddevdec-focalplaneplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability2-histplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability1-histplot

Plot

matchedvisitcore-{band}-stellarastrometricrepeatability3-histplot

Plot

matchedvisitcore-{band}-stellarastrometricselfrepeatabilitydec-histplot

Plot

matchedvisitcore-{band}-stellarastrometricselfrepeatabilityra-histplot

Plot

analyzePreSourceTableCore

preSourceTableCore_metrics

MetricMeasurementBundle

presourcetablecore-skysourceflux-histplot

Plot

Tract-level tasks#

Task (link to pipeline yaml)

datasetType

StorageClass

analyzeDiaSourceTableTract

diaSourceTableTract_metrics

MetricMeasurementBundle

diasourcetabletract-streakdiasourceplot-diaskyplot

Plot

validateObjectTableCore

objectTableColumnValidate_metrics

MetricMeasurementBundle

analyzeObjectTableCore

objectTableCore_metrics

MetricMeasurementBundle

objecttablecore-{band}-skyobjectsky-skyplot

Plot

objecttablecore-xperppsfp-colorcolorfitplot

Plot

objecttablecore-{band}-shapesizefractionaldiff-scatterplotwithtwohists

Plot

objecttablecore-xperpcmodel-colorcolorfitplot

Plot

objecttablecore-{band}-e1diff-scatterplotwithtwohists

Plot

objecttablecore-wperppsfp-colorcolorfitplot

Plot

objecttablecore-wperpcmodel-colorcolorfitplot

Plot

objecttablecore-{band}-skyobjectflux-histplot

Plot

objecttablecore-{band}-e2diff-scatterplotwithtwohists

Plot

objecttablecore-{band}-cmodelbulgesizevscmodelbulgemag-scatterplotwithtwohists

Plot

objecttablecore-{band}-psfcmodelscatter-scatterplotwithtwohists

Plot

objecttablecore-{band}-cmodeldisksizevscmodeldiskmag-scatterplotwithtwohists

Plot

objecttablecore-{band}-shapesizedetradiusvspsfmag-scatterplotwithtwohists

Plot

objecttablecore-{band}-shapesizedetradiusvscmodelmag-scatterplotwithtwohists

Plot

analyzeObjectTableExtended

objectTableExtended_metrics

MetricMeasurementBundle

objecttableextended-{band}-ap12psfsky-skyplot

Plot

objecttableextended-{band}-psfcmodelsky-skyplot

Plot

propertyMapTract

propertymaptract-healsparsemap-deepcoadd-dcr-e1-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-dra-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-size-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-maglim-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-ddec-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-sky-noise-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-dcr-e2-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-exposure-time-sum-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-e1-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-psf-e2-weighted-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-mean-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-min-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-epoch-max-propertymapplot

Plot

propertymaptract-healsparsemap-deepcoadd-sky-background-weighted-mean-propertymapplot

Plot

Visit-level metrics#

Below we list out the metrics associated with each metric bundle at a visit level.

calexpSummary_metrics#

dataId used in examples:

did_visit_det = {'visit':7024040300001, 'skymap':'ops_rehersal_prep_2k_v1', 'instrument':'LSSTComCamSim', 'detector':0}

metricBundle: calexpSummaryMetrics (source)

Docstring: Calibrated exposure summary statistics to load from the butler

Notes: These metrics are computed outside of analysis_tools in the computeExposureSummaryStats pipetask (source),

which has the following docstring: Task to compute exposure summary statistics.

This task computes various quantities suitable for DPDD and other downstream processing at the detector centers, including:

  • psfSigma

  • psfArea

  • psfIxx

  • psfIyy

  • psfIxy

  • ra

  • dec

  • zenithDistance

  • zeroPoint

  • skyBg

  • skyNoise

  • meanVar

  • raCorners

  • decCorners

  • astromOffsetMean

  • astromOffsetStd

These additional quantities are computed from the stars in the detector:

  • psfStarDeltaE1Median

  • psfStarDeltaE2Median

  • psfStarDeltaE1Scatter

  • psfStarDeltaE2Scatter

  • psfStarDeltaSizeMedian

  • psfStarDeltaSizeScatter

  • psfStarScaledDeltaSizeScatter

These quantities are computed based on the PSF model and image mask to assess the robustness of the PSF model across a given detector (against, e.g., extrapolation instability):

  • maxDistToNearestPsf

  • psfTraceRadiusDelta

These quantities are computed to assess depth:

  • effTime

  • effTimePsfSigmaScale

  • effTimeSkyBgScale

  • effTimeZeroPointScale

metric name

value

units

psfSigma

1.506499

pix

psfArea

34.678724

psfIxx

2.258628

pix

psfIyy

2.281597

pix

psfIxy

0.049743

pix

ra

124.617999

deg

dec

-15.026213

deg

zenithDistance

17.825242

deg

zeroPoint

31.271871

mag

skyBg

1703.767764

mag

skyNoise

34.471789

mag

meanVar

1175.081472

mag

astromOffsetMean

0.005423

arcsec

astromOffsetStd

0.003085

arcsec

nPsfStar

419.000000

psfStarDeltaE1Median

-0.000103

pix

psfStarDeltaE2Median

-0.000645

pix

psfStarDeltaE1Scatter

0.008924

pix

psfStarDeltaE2Scatter

0.009482

pix

psfStarDeltaSizeMedian

0.000991

pix

psfStarDeltaSizeScatter

0.007213

pix

psfStarScaledDeltaSizeScatter

0.004785

pix

psfTraceRadiusDelta

0.012334

pix

maxDistToNearestPsf

419.527519

deg

effTime

12.083753

s

effTimePsfSigmaScale

1.127983

s

effTimeSkyBgScale

0.344765

s

effTimeZeroPointScale

1.035749

s

matchedVisitCore_metrics#

dataId used in examples:

did_tract = {'tract':9813, 'skymap': 'ops_rehersal_prep_2k_v1', 'band': 'g', 'instrument':'LSSTComCamSim'}

These metrics are for a set of “matched visits,” which is created by taking all objects from the isolated_star_sources table in a given tract, then matching all of the sourceTable catalogs to accumulate all measurements for each source. These collections can be used for repeatability measurements.

Note that although these metrics use information from individual visits, their Butler dimension is tract because they aggregate measurements from all visits contributing to a tract.

metricBundle: stellarAstrometricRepeatability1 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: AMx, ADx, and AFx (where x=[1, 2, 3]) are defined in the Observatory System Specifications (OSS) as requirement OSS-REQ-0388. AMx is a measure of astrometric repeatability on xx arcminute scales, where xx=[5, 20, 200] for x=[1, 2, 3]. ADx defines thresholds for outliers, and AFx captures the percentage of outliers exceeding the ADx outlier limit.

Defined with signal-to-noise (S/N) cuts of 50 < S/N < 50000 and a magnitude range of 17 < mag < 21.5.

stellarAstrometricRepeatability1 measures repeatability on 5 arcminute scales.

metric name

value

units

g_AM1

11.372618

mas

g_AF1

9.814720

%

g_AD1

19.861856

mas

r_AM1

10.864433

mas

r_AF1

8.558647

%

r_AD1

18.849730

mas

i_AM1

10.225130

mas

i_AF1

7.298187

%

i_AD1

17.797588

mas

metricBundle: stellarAstrometricRepeatability2 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: stellarAstrometricRepeatability2 measures repeatability on 20 arcminute scales.

metric name

value

units

g_AM2

10.659738

mas

g_AF2

8.527521

%

g_AD2

18.899353

mas

r_AM2

10.275115

mas

r_AF2

7.466236

%

r_AD2

17.986514

mas

i_AM2

9.798453

mas

i_AF2

6.640539

%

i_AD2

17.214238

mas

metricBundle: stellarAstrometricRepeatability3 (source)

Docstring: Calculate the AMx, ADx, AFx metrics and make histograms showing the data used to compute the metrics.

Notes: stellarAstrometricRepeatability3 measures repeatability on 200 arcminute scales. There are no measurements for these metrics currently, because we do not have datasets spanning the requisite 200-arcminute scale.

metric name

value

units

g_AM3

nan

mas

g_AF3

nan

%

g_AD3

nan

mas

r_AM3

nan

mas

r_AF3

nan

%

r_AD3

nan

mas

i_AM3

nan

mas

i_AF3

nan

%

i_AD3

nan

mas

metricBundle: stellarAstrometricSelfRepeatabilityDec (source)

Docstring: Calculate the median position RMS of point sources.

Notes: The median of the per-source RMS positional scatter in Declination. Defined with a magnitude selection of 17 < mag < 21.5.

metric name

value

units

g_dmL2AstroErr_Dec

6.699939

mas

r_dmL2AstroErr_Dec

7.066788

mas

i_dmL2AstroErr_Dec

7.651587

mas

metricBundle: stellarAstrometricSelfRepeatabilityRA (source)

Docstring: Calculate the median position RMS of point sources.

Notes: The median of the per-source RMS positional scatter in Right Ascension. Defined with a magnitude selection of 17 < mag < 21.5.

metric name

value

units

g_dmL2AstroErr_RA

8.582950

mas

r_dmL2AstroErr_RA

7.482557

mas

i_dmL2AstroErr_RA

7.975985

mas

metricBundle: stellarPhotometricRepeatability (source)

Docstring: Compute photometric repeatability from multiple measurements of a set of stars. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and per-group quantities are computed (e.g., a representative S/N for the group based on the median of associated per-source measurements). Third, additional per-group criteria are applied. Fourth, summary statistics are computed for the filtered groups.

Notes: The median and outlier fraction of the per-source RMS magnitude scatter. Defined for stars with S/N > 200. Metrics with “stellarPhotRepeatStdev” in their names correspond to PA1 defined in the OSS as requirement OSS-REQ-0387. Metrics with “stellarPhotRepeatOutlierFraction” correspond to PF1 (the fraction of outliers exceeding the threshold PA2) from the same requirement, with PA2 (the outlier threshold) set to 15 mmag by default. The “_ct” metrics simply capture the number of stars that went into the calculation.

metric name

value

units

g_stellarPhotRepeatStdev

5.502570

mmag

g_stellarPhotRepeatOutlierFraction

5.647383

%

g_ct

726.0

ct

r_stellarPhotRepeatStdev

5.011919

mmag

r_stellarPhotRepeatOutlierFraction

6.167401

%

r_ct

908.0

ct

i_stellarPhotRepeatStdev

5.056592

mmag

i_stellarPhotRepeatOutlierFraction

6.779661

%

i_ct

944.0

ct

metricBundle: stellarPhotometricResiduals (source)

Docstring: Plot mean photometric residuals as a function of the position on the focal plane. First, a set of per-source quality criteria are applied. Second, the individual source measurements are grouped together by object index and the per-group magnitude is computed. The residuals between the individual sources and these magnitudes are then used to construct a plot showing the mean residual as a function of the focal-plane position.

Notes: In addition to producing plots of the residuals as a function of focal plane position, the median, standard deviation (“Stdev”), and the median absolute deviation \(\sigma_{MAD}\) (“SigmaMad”) are reported for the tract. Because these are residuals about the median, the median residual should be 0 by construction.

metric name

value

units

g_photResidTractSigmaMad

9.297931

mmag

g_photResidTractStdev

73.996488

mmag

g_photResidTractMedian

0.000000

mmag

r_photResidTractSigmaMad

8.565694

mmag

r_photResidTractStdev

66.920415

mmag

r_photResidTractMedian

0.000000

mmag

i_photResidTractSigmaMad

8.489994

mmag

i_photResidTractStdev

65.658013

mmag

i_photResidTractMedian

0.000000

mmag

preSourceTableCore_metrics#

dataId used in examples:

did_visit_det = {'visit':7024040300002, 'skymap':'ops_rehersal_prep_2k_v1', 'instrument':'LSSTComCamSim', 'detector':0}

metricBundle: skyFluxVisitStatisticMetric source

Docstring: Calculate sky flux statistics. This uses the 9-pixel aperture flux for sky sources/objects, and returns multiple statistics on the measured fluxes. Note that either visitContext (measurement on sourceTable) or coaddContext (measurement on objectTable) must be specified.

metric name

value

units

medianSky

-2.348488

nJy

meanSky

-7.034565

nJy

stdevSky

618.708919

nJy

sigmaMADSky

600.762855

nJy

Note that the default visit (7024040300001) used for this document did not have an entry for preSourceTableCore_metrics, so these values are for visit 7024040300002.

Tract-level metrics#

diaSourceTableTract_metrics#

dataId used in examples:

did_tract = {'tract':9813, 'skymap': 'ops_rehersal_prep_2k_v1', 'band': 'g', 'instrument':'LSSTComCamSim'}

metricBundle: NumDiaSources (source)

Docstring: Count all DiaSources that do not have known bad/quality flags.

metric name

value

units

numDiaSources

96643.0

ct

metricBundle: NumStreakCenterDiaSources (source)

Docstring: Count DiaSources that have the STREAK flag in the center of the source.

metric name

value

units

numStreakCenterDiaSources

115.0

ct

metricBundle: NumStreakDiaSources (source)

Docstring: Count DiaSources that fall in a STREAK flag footprint region.

metric name

value

units

numStreakDiaSources

116.0

ct

objectTableColumnValidate_metrics#

dataId used in examples:

did_tract = {'tract':9813, 'skymap': 'ops_rehersal_prep_2k_v1', 'band': 'g', 'instrument':'LSSTComCamSim'}

metricBundle: validCmodelFluxMetric (source)

Docstring: Calculate the fraction of values in a column that have valid numerical values (i.e., not NaN), and that fall within the specified “reasonable” range for the values.

metric name

value

units

g_validFracColumn

87.698572

%

g_nanFracColumn

10.009657

%

r_validFracColumn

91.172296

%

r_nanFracColumn

6.848321

%

i_validFracColumn

88.884015

%

i_nanFracColumn

8.870868

%

metricBundle: validPsfFluxMetric (source)

Docstring: Calculate the fraction of values in a column that have valid numerical values (i.e., not NaN), and that fall within the specified “reasonable” range for the values.

metric name

value

units

g_validFracColumn

90.162651

%

g_nanFracColumn

6.994101

%

r_validFracColumn

93.751672

%

r_nanFracColumn

3.717816

%

i_validFracColumn

91.044549

%

i_nanFracColumn

5.854848

%

objectTableCore_metrics#

dataId used in examples:

did_tract = {'tract':9813, 'skymap': 'ops_rehersal_prep_2k_v1', 'band': 'g', 'instrument':'LSSTComCamSim'}

metricBundle: blendMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender for blends with multiple children

metric name

value

units

numBlends

54537.000000

meanBlendIterations

16.765004

meanBlendLogL

-8419.284180

metricBundle: e1Diff (source)

Docstring: No docstring

Notes: Statistics of residual of e1 ellipticity measurement of sources relative to the PSF.

metric name

value

units

g_highSNStars_median

-0.002205

pix

g_highSNStars_sigmaMad

0.002918

pix

g_highSNStars_count

295.0

ct

g_lowSNStars_median

-0.001460

pix

g_lowSNStars_sigmaMad

0.004919

pix

g_lowSNStars_count

1512.0

ct

r_highSNStars_median

0.000087

pix

r_highSNStars_sigmaMad

0.001245

pix

r_highSNStars_count

351.0

ct

r_lowSNStars_median

0.000110

pix

r_lowSNStars_sigmaMad

0.002334

pix

r_lowSNStars_count

1827.0

ct

i_highSNStars_median

0.000113

pix

i_highSNStars_sigmaMad

0.001424

pix

i_highSNStars_count

319.0

ct

i_lowSNStars_median

0.000138

pix

i_lowSNStars_sigmaMad

0.002367

pix

i_lowSNStars_count

1835.0

ct

metricBundle: e2Diff (source)

Docstring: No docstring

Notes: Statistics of residual of e2 ellipticity measurement of sources relative to the PSF.

metric name

value

units

g_highSNStars_median

-0.001331

pix

g_highSNStars_sigmaMad

0.002531

pix

g_highSNStars_count

295.0

ct

g_lowSNStars_median

-0.000700

pix

g_lowSNStars_sigmaMad

0.004103

pix

g_lowSNStars_count

1512.0

ct

r_highSNStars_median

-0.000157

pix

r_highSNStars_sigmaMad

0.001335

pix

r_highSNStars_count

351.0

ct

r_lowSNStars_median

-0.000051

pix

r_lowSNStars_sigmaMad

0.002267

pix

r_lowSNStars_count

1827.0

ct

i_highSNStars_median

-0.000034

pix

i_highSNStars_sigmaMad

0.001283

pix

i_highSNStars_count

319.0

ct

i_lowSNStars_median

0.000015

pix

i_lowSNStars_sigmaMad

0.002503

pix

i_lowSNStars_count

1835.0

ct

metricBundle: isolatedDeblenderMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender for parents with only a single child peak.

metric name

value

units

numIsolated

161369.000000

meanIsolatedIterations

16.086714

meanIsolatedLogL

-232.709503

metricBundle: parentDeblenderMetrics (source)

Docstring: Calculate metrics based on the performance of the deblender

metric name

value

units

numParents

215916.000000

numDeblendFailed

8.000000

numIncompleteData

23955.000000

numDetectedPeaks

331274.000000

numDeblendedChildren

331121.000000

metricBundle: psfCModelScatter (source)

Docstring: Creates a scatterPlot showing the difference between PSF and CModel mags

Notes: Metrics give summary statistics of the PSF-cmodel magnitudes.

metric name

value

units

g_psf_cModel_diff_median

-1.953607

mmag

g_psf_cModel_diff_sigmaMad

2.120985

mmag

g_psf_cModel_diff_mean

-1.179624

mmag

r_psf_cModel_diff_median

-0.799037

mmag

r_psf_cModel_diff_sigmaMad

1.698413

mmag

r_psf_cModel_diff_mean

0.120015

mmag

i_psf_cModel_diff_median

-0.566337

mmag

i_psf_cModel_diff_sigmaMad

1.800549

mmag

i_psf_cModel_diff_mean

-0.033813

mmag

metricBundle: shapeSizeFractionalDiff (source)

Docstring: No docstring

Notes: Fractional size residuals (\(S/S_{PSF} - 1\)). Stars with “highSN” have S/N > 2700, and “lowSN” have S/N > 500.

metric name

value

units

g_highSNStars_median

0.003467

pix

g_highSNStars_sigmaMad

0.004422

pix

g_highSNStars_count

295.0

ct

g_lowSNStars_median

0.003165

pix

g_lowSNStars_sigmaMad

0.006352

pix

g_lowSNStars_count

1512.0

ct

r_highSNStars_median

0.000477

pix

r_highSNStars_sigmaMad

0.001387

pix

r_highSNStars_count

351.0

ct

r_lowSNStars_median

0.000496

pix

r_lowSNStars_sigmaMad

0.002080

pix

r_lowSNStars_count

1827.0

ct

i_highSNStars_median

0.000747

pix

i_highSNStars_sigmaMad

0.001530

pix

i_highSNStars_count

319.0

ct

i_lowSNStars_median

0.000921

pix

i_lowSNStars_sigmaMad

0.002236

pix

i_lowSNStars_count

1835.0

ct

metricBundle: skippedDeblenderMetrics (source)

Docstring: Calculate metrics based on blends skipped by the deblender

metric name

value

units

numSkippedBlends

2.000000

numBlendParentTooBig

2.000000

numBlendTooManyPeaks

0.000000

numBlendTooManyMasked

0.000000

numSkippedPeaks

145.000000

metricBundle: skyFluxStatisticMetric (source)

Docstring: Calculate sky flux statistics. This uses the 9-pixel aperture flux for sky sources/objects, and returns multiple statistics on the measured fluxes. Note that either visitContext (measurement on sourceTable) or coaddContext (measurement on objectTable) must be specified.

metric name

value

units

g_medianSky

-1.353270

nJy

g_meanSky

0.828698

nJy

g_stdevSky

148.568045

nJy

g_sigmaMADSky

97.669588

nJy

r_medianSky

-5.492619

nJy

r_meanSky

-1.941782

nJy

r_stdevSky

203.472885

nJy

r_sigmaMADSky

138.705877

nJy

i_medianSky

-9.055690

nJy

i_meanSky

-5.286348

nJy

i_stdevSky

300.578227

nJy

i_sigmaMADSky

211.787172

nJy

metricBundle: wPerpCModel (source)

Docstring: No docstring

Notes: Width of stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with cmodel magnitudes.

metric name

value

units

wPerp_cModelFlux_sigmaMAD

10.225373

mmag

wPerp_cModelFlux_median

-0.565891

mmag

metricBundle: wPerpPSFP (source)

Docstring: No docstring

Notes: Width of the blue portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with PSF magnitudes.

metric name

value

units

wPerp_psfFlux_sigmaMAD

10.580971

mmag

wPerp_psfFlux_median

-0.496211

mmag

metricBundle: xPerpCModel (source)

Docstring: No docstring

Notes: Width of the red portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with cmodel magnitudes.

Notes: Width of the blue portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with PSF magnitudes.

metric name

value

units

xPerp_cModelFlux_sigmaMAD

13.572956

mmag

xPerp_cModelFlux_median

-0.158474

mmag

metricBundle: xPerpPSFP (source)

Docstring: No docstring

Notes: Width of the red portion of the stellar locus in (r-i) vs. (g-r) as defined in Ivezic et al. 2004, measured with PSF magnitudes.

metric name

value

units

xPerp_psfFlux_sigmaMAD

14.075556

mmag

xPerp_psfFlux_median

0.286494

mmag

Note the erroneous “P” at the end of “wPerpPSFP” and “xPerpPSFP”. This is due to a typo in the pipelines code.

objectTableExtended_metrics#

dataId used in examples:

did_tract = {'tract':9813, 'skymap': 'ops_rehersal_prep_2k_v1', 'band': 'g', 'instrument':'LSSTComCamSim'}

metricBundle: ap12PsfSky (source)

Docstring: No docstring

Notes: Difference between magnitudes in a 12-pixel aperture and PSF magnitudes. Metrics summarize rolled-up statistics of the plotted quantities.

metric name

value

units

g_ap12_psf_diff_median

-2.497167

mmag

g_ap12_psf_diff_sigmaMad

7.382115

mmag

g_ap12_psf_diff_mean

-3.173155

mmag

r_ap12_psf_diff_median

-1.285786

mmag

r_ap12_psf_diff_sigmaMad

4.182110

mmag

r_ap12_psf_diff_mean

-3.415648

mmag

i_ap12_psf_diff_median

-1.689628

mmag

i_ap12_psf_diff_sigmaMad

4.563705

mmag

i_ap12_psf_diff_mean

-3.558899

mmag

Visit-level plots#

matchedVisitCore#

_images/matchedvisitcore-%7Bband%7D-stellarphotometricrepeatability-histplot.png

Fig. 2 Plot Name: matchedVisitCore_g_stellarPhotometricRepeatability_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualstddevra-focalplaneplot.png

Fig. 3 Plot Name: matchedVisitCore_g_stellarAstrometricResidualStdDevRA_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarphotometricresiduals-focalplaneplot.png

Fig. 4 Plot Name: matchedVisitCore_g_stellarPhotometricResiduals_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualsdec-focalplaneplot.png

Fig. 5 Plot Name: matchedVisitCore_g_stellarAstrometricResidualsDec_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualsra-focalplaneplot.png

Fig. 6 Plot Name: matchedVisitCore_g_stellarAstrometricResidualsRA_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricresidualstddevdec-focalplaneplot.png

Fig. 7 Plot Name: matchedVisitCore_g_stellarAstrometricResidualStdDevDec_FocalPlanePlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability1-histplot.png

Fig. 8 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability1_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability2-histplot.png

Fig. 9 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability2_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricrepeatability3-histplot.png

Fig. 10 Plot Name: matchedVisitCore_g_stellarAstrometricRepeatability3_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricselfrepeatabilitydec-histplot.png

Fig. 11 Plot Name: matchedVisitCore_g_stellarAstrometricSelfRepeatabilityDec_HistPlot#

Associated metrics: matchedVisitCore_metrics

_images/matchedvisitcore-%7Bband%7D-stellarastrometricselfrepeatabilityra-histplot.png

Fig. 12 Plot Name: matchedVisitCore_g_stellarAstrometricSelfRepeatabilityRA_HistPlot#

Associated metrics: matchedVisitCore_metrics

preSourceTableCore#

_images/presourcetablecore-skysourceflux-histplot.png

Fig. 13 Plot Name: preSourceTableCore_skySourceFlux_HistPlot#

Associated metrics: preSourceTableCore_metrics

Tract-level plots#

diaSourceTableTract#

_images/diasourcetabletract-streakdiasourceplot-diaskyplot.png

Fig. 14 Plot Name: diaSourceTableTract_streakDiaSourcePlot_DiaSkyPlot#

Associated metrics: diaSourceTableTract_metrics

objectTableCore#

_images/objecttablecore-%7Bband%7D-skyobjectsky-skyplot.png

Fig. 15 Plot Name: objectTableCore_g_skyObjectSky_SkyPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-skyobjectflux-histplot.png

Fig. 16 Plot Name: objectTableCore_g_skyObjectFlux_HistPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-xperppsfp-colorcolorfitplot.png

Fig. 17 Plot Name: objectTableCore_xPerpPSFP_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-xperpcmodel-colorcolorfitplot.png

Fig. 18 Plot Name: objectTableCore_xPerpCModel_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-wperppsfp-colorcolorfitplot.png

Fig. 19 Plot Name: objectTableCore_wPerpPSFP_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-wperpcmodel-colorcolorfitplot.png

Fig. 20 Plot Name: objectTableCore_wPerpCModel_ColorColorFitPlot#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizefractionaldiff-scatterplotwithtwohists.png

Fig. 21 Plot Name: objectTableCore_g_shapeSizeFractionalDiff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizedetradiusvspsfmag-scatterplotwithtwohists.png

Fig. 22 Plot Name: objectTableCore_g_shapeSizeDetRadiusVsPsfMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-shapesizedetradiusvscmodelmag-scatterplotwithtwohists.png

Fig. 23 Plot Name: objectTableCore_g_shapeSizeDetRadiusVsCmodelMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-e1diff-scatterplotwithtwohists.png

Fig. 24 Plot Name: objectTableCore_g_e1Diff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-e2diff-scatterplotwithtwohists.png

Fig. 25 Plot Name: objectTableCore_g_e2Diff_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-cmodelbulgesizevscmodelbulgemag-scatterplotwithtwohists.png

Fig. 26 Plot Name: objectTableCore_g_cModelBulgeSizeVsCmodelBulgeMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-cmodeldisksizevscmodeldiskmag-scatterplotwithtwohists.png

Fig. 27 Plot Name: objectTableCore_g_cModelDiskSizeVsCmodelDiskMag_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

_images/objecttablecore-%7Bband%7D-psfcmodelscatter-scatterplotwithtwohists.png

Fig. 28 Plot Name: objectTableCore_g_psfCModelScatter_ScatterPlotWithTwoHists#

Associated metrics: objectTableCore_metrics

objectTableExtended#

_images/objecttableextended-%7Bband%7D-ap12psfsky-skyplot.png

Fig. 29 Plot Name: objectTableExtended_g_ap12PsfSky_SkyPlot#

Associated metrics: objectTableExtended_metrics

_images/objecttableextended-%7Bband%7D-psfcmodelsky-skyplot.png

Fig. 30 Plot Name: objectTableExtended_g_psfCModelSky_SkyPlot#

Associated metrics: objectTableExtended_metrics

PropertyMapTract#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-dra-weighted-mean-propertymapplot.png

Fig. 31 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_dra_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-ddec-weighted-mean-propertymapplot.png

Fig. 32 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_ddec_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-size-weighted-mean-propertymapplot.png

Fig. 33 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_size_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-maglim-weighted-mean-propertymapplot.png

Fig. 34 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_maglim_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-sky-noise-weighted-mean-propertymapplot.png

Fig. 35 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_sky_noise_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-e1-weighted-mean-propertymapplot.png

Fig. 36 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_e1_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-psf-e2-weighted-mean-propertymapplot.png

Fig. 37 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_psf_e2_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-e1-weighted-mean-propertymapplot.png

Fig. 38 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_e1_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-dcr-e2-weighted-mean-propertymapplot.png

Fig. 39 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_dcr_e2_weighted_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-exposure-time-sum-propertymapplot.png

Fig. 40 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_exposure_time_sum_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-mean-propertymapplot.png

Fig. 41 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_mean_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-min-propertymapplot.png

Fig. 42 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_min_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-epoch-max-propertymapplot.png

Fig. 43 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_epoch_max_PropertyMapPlot#

_images/propertymaptract-healsparsemap-deepcoadd-sky-background-weighted-mean-propertymapplot.png

Fig. 44 Plot Name: propertyMapTract_HealSparseMap_deepCoadd_sky_background_weighted_mean_PropertyMapPlot#